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Abstract
We investigate numerical integration of ordinary
differential equations (ODEs) for Hamiltonian
Monte Carlo (HMC). High-quality integration is
crucial for designing efficient and effective pro-
posals for HMC. While the standard method is
leapfrog (Störmer-Verlet) integration, we propose
the use of an exponential integrator, which is
robust to stiff ODEs with highly-oscillatory com-
ponents. This oscillation is difficult to reproduce
using leapfrog integration, even with carefully
selected integration parameters and precondition-
ing. Concretely, we use a Gaussian distribution
approximation to segregate stiff components of
the ODE. We integrate this term analytically for
stability and account for deviation from the ap-
proximation using variation of constants. We con-
sider various ways to derive Gaussian approxi-
mations and conduct extensive empirical studies
applying the proposed “exponential HMC” to sev-
eral benchmarked learning problems. We com-
pare to state-of-the-art methods for improving
leapfrog HMC and demonstrate the advantages of
our method in generating many effective samples
with high acceptance rates in short running times.

1. Introduction
Markov chain Monte Carlo (MCMC) is at the core of many
methods in computational statistics (Gelman et al., 2004;
Robert & Casella, 2004) to sample from complex probability
distributions for inference and learning.

Metropolis-Hastings MCMC obtains such samples by con-
structing a Markov chain with help from proposal distri-
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butions that generate random walks in sample space. A
fraction of these walks aligned with the target distribution is
kept, while the remainder is discarded. Sampling efficiency
and quality depends critically on the proposal distribution.
For this reason, designing good proposals has long been a
subject of intensive research.

For distributions over continuous variables, Hamiltonian
Monte Carlo (HMC) is a state-of-the-art sampler using clas-
sical mechanics to generate proposal distributions (Neal,
2011). The method starts by introducing auxiliary sam-
pling variables. It then treats the negative log density of
the variables’ joint distribution as the Hamiltonian of parti-
cles moving in sample space. Final positions on the motion
trajectories are used as proposals.

The equations of motion are ordinary differential equations
(ODEs) requiring numerical integration. Several factors
affect the choice of integrators. Time reversibility is needed
for the Markov chain to converge to the target distribution,
and volume preservation ensures that the sample acceptance
test is tractable. The acceptance rate of HMC is determined
by how well the integrator preserves the energy of the phys-
ical system, and hence high-fidelity numerical solutions are
preferable. In the rare case that the ODE can be integrated
exactly, no samples would be rejected. More realistically,
however, when the ODE is integrated approximately, es-
pecially over a long time period to encourage exploration
of the sample space, integration error can impede energy
conservation, slowing convergence. Thus, the time period
for integration usually is subdivided into many shorter steps.

Despite its relevance to sampling efficiency, investigation
of sophisticated numerical integrators for HMC has been
scarce in the current machine learning literature. The
standard HMC integrator is the leapfrog (Störmer-Verlet)
method. Leapfrog integration, however, is sensitive to
stiff ODEs with highly-oscillatory dynamical components
(Hairer et al., 2006). When the target density yields a stiff
ODE, e.g. a multivariate Gaussian distribution with small
variances in certain dimensions, the time step for leapfrog
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is limited to the scale of the stiff components to avoid per-
turbing the energy of the system and consequently lowering
MCMC acceptance rates. This results in limited motion in
sample space, requiring many integration steps to explore
the space. More generally, stiff ODEs occur in HMC when-
ever target distributions tightly peak around their modes, fur-
ther motivating the need for advanced integrators. Although
preconditioning can reduce stiffness and partially alleviate
this problem, it is often insufficient, as demonstrated in our
empirical studies.

In this paper, we address the challenge of simulating stiff
ODEs in HMC using an explicit exponential integrator. Ex-
ponential integrators are known in simulation and numerics
for their ability to take large time steps with enhanced stabil-
ity. They decompose ODEs into two terms, a linearization
solvable in closed form and a nonlinear remainder. For
HMC, the linear term encodes a Gaussian component of the
distribution; when the small variances in the distribution
are adequately summarized by this part, exponential inte-
gration outperforms generic counterparts like leapfrog. Our
exponential integrator (“expHMC”) is easily-implemented
and efficient, with high acceptance rates, broad exploration
of sample space, and fast convergence due to the reduced
restriction on the time step size. The flexibility to choose
filter functions in exponential integrators further enhances
the applicability of our method.

We validate the effectiveness of expHMC with extensive
empirical studies on various types of distributions, including
Bayesian logistic regression and independent component
analysis. We also compare expHMC to alternatives, such
as the conventional leapfrog method and the recently pro-
posed Riemann manifold HMC, demonstrating desirable
characteristics in scenarios where other methods suffer.

We describe basic HMC in §2 and our approach in §3. We
then review related work in §4, and report several empirical
studies in §5. We conclude in §7.

2. Hamiltonian Monte Carlo
Suppose we would like to sample a random variable q ∈
Rd ∼ p(q). Hamiltonian Monte Carlo (HMC) considers
the joint distribution between q and an auxiliary random
variable p ∈ Rd ∼ p(p) that is distributed independently of
q. For simplicity, p(p) is often assumed to be a zero-mean
Gaussian with covarianceM .

The joint density p(q,p) is used to define a Hamiltonian

H(q,p) = − log p(q)− log p(p)

= U(q) +
1

2
pTM−1p+ const., (1)

whereM is referred to as the (preconditioning) mass matrix.

The dynamics governed by this Hamiltonian are given by

function LEAPFROG((q0,p0);h, L)
p1/2← p0 − 1

2h∇qU(q0)
for i← 1, 2, . . . , L
qi ← qi−1 + hM−1pi−1/2

if i 6= L then
pi+1/2← pi−1/2 − h∇qU(qi)

pL ← pL−1/2 − 1
2h∇qU(qL)

return (qL,pL) as (q∗,p∗)

Figure 1. Leapfrog integrator.

the following coupled system of ODEs:{
q̇ = ∇pH =M−1p

ṗ = −∇qH = −∇qU(q),
(2)

where dots denote derivatives in time.

The trajectories of q and p provide proposals to the
Metropolis-Hastings MCMC procedure. Specifically, HMC
applies the following steps: (i) starting from k =
1, draw pk ∼ N (0,M); (ii) compute the position
(q∗,p∗) by simulating (2) for time t with initial condi-
tions (qk−1,pk); (iii) compute the change in Hamiltonian
δH = H(qk−1,pk)−H(q∗,p∗); (iv) output qk = q∗ with
probability min(eδH , 1).

If (q∗,p∗) comes from solving (2) exactly, then by con-
servation of H , δH = 0 and the new sample is always
accepted. Closed-form solutions to (2) rarely exist, however.
In practice, t is broken into L discrete steps, and integration
is carried out numerically in increments of h = t/L. This
discretization creates a chance of rejected samples, as H
is no longer conserved exactly. The constructed chain of
{qk} still converges to the target distribution, so long as the
integrator is symplectic and time-reversible (Neal, 2011).

An integrator satisfying these criteria is the leapfrog
(Störmer-Verlet) method in Figure 1. It is easily imple-
mented and explicit—no linear or nonlinear solvers are
needed to generate (qL,pL) from (q0,p0). For large h,
however, it suffers from instability that can lead to inaccu-
rate solutions. This restriction on h is problematic when
the ODE (2) is stiff, requiring small h and correspondingly
large L to resolve high-frequency oscillations of (q,p). We
demonstrate this instability empirically in §5.

3. Exponential HMC
The idea behind exponential integration is to consider dy-
namics at different scales explicitly. This is achieved by
decomposing the Hamiltonian into two terms. The first en-
codes high-frequency and numerically-unstable oscillation,
while the second encodes slower dynamics that are robust
to explicit integration. The insight is that the first part can
be solved analytically, leaving numerical integration for the
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more stable remainder. Assembling these two parts will
provide a stable solution to the original dynamics.

Here, we introduce the basic idea first and then propose
practical strategies for decomposition.

3.1. Exponential Integrator

We consider the following structure for U :

∇qU(q) = Σ−1q + f(q) (3)

for some positive definite matrix Σ ∈ Rn×n and a possibly
nonlinear function f : Rn → Rn. This form can originate
from a density with “slow” portion f(q) modulated by a
possibly stiff Gaussian distribution from Σ−1, with stiffness
from small variances.

The dynamical equations (2) are equivalent to

q̈ +M−1(Σ−1q + f(q)) = 0. (4)

We substitute r =M1/2q and rewrite (4) as

r̈ + Ω2r + F (r) = 0, (5)

where Ω2 = M−1/2Σ−1M−1/2 and F (r) =
M−1/2f(M−1/2r).

When the nonlinear component f(·) (thus F (·)) van-
ishes, (5) is analytically solvable; in one dimension, the
solution is r(t) = a cos(ωt+ b) where a and b depend on
the initial conditions. When the nonlinear component does
not vanish, variation of constants shows[

r(t)
ṙ(t)

]
=

[
cos tΩ Ω−1 sin tΩ
−Ω sin tΩ cos tΩ

] [
r(0)
ṙ(0)

]
−
∫ t

0

[
Ω−1 sin(t− s)Ω
cos(t− s)Ω

]
F (r(s)) ds. (6)

Cosine and sine here are matrix functions evaluated on
eigenvalues with eigenvectors intact.

The solution (6) can be seen as a perturbation of the an-
alytic solution (the first term on the right hand side) due
to the nonlinear component. Following Hairer & Lubich
(2000), discretizing the integral leads to a class of explicit
integrators advancing the pair (ri, ṙi) forward for time h:

ri+1 = cos(hΩ)ri + Ω−1 sin(hΩ)ṙi

− 1

2
h2ψ(hΩ)F (φ(hΩ)ri)

ṙi+1 = −Ω sin(hΩ)ri + cos(hΩ)ṙi

− 1

2
h(ψ0(hΩ)F (φ(hΩ)ri)

+ψ1(hΩ)F (φ(hΩ)ri+1))

(7)

These integrators are parameterized by the filter functions
φ,ψ,ψ0,ψ1 : Rn×n → Rn×n. For HMC to converge, we
enforce the following criteria on the filters:

function EXPONENTIAL-STEP((q0,p0);h, L)
. Transform into the new variable
(r0, ṙ0)← (M1/2q0,M

−1/2p0)
. Precompute the following matrices & the filters
(C,S)← (cos(hΩ), sin(hΩ))
for i← 0, 1, . . . , L− 1
ri+1← Cri + Ω−1Sṙi − 1

2h
2ψF (φri)

ṙi+1←
∣∣∣∣ −ΩSri +Cṙi

− 1
2h(ψ0F (φri) +ψ1F (φri+1))

return (M−1/2rL,M
1/2ṙL) as (q∗,p∗)

Figure 2. Exponential integrator.

• Consistency and accuracy to second order: φ(0) =
ψ(0) = ψ0(0) = ψ1(0) = 1

• Reversibility: ψ(·) = sinc(·)ψ1(·) and ψ0(·) =
cos(·)ψ1(·)

• Symplecticity: ψ(·) = sinc(·)φ(·)

These conditions permit several choices of filters. We adopt
two basic options:

Simple filters (Deuflhard, 1979):
φ = 1, ψ = sinc(·), ψ0 = cos(·), ψ1 = 1

Mollified filters (Garcı́a-Archilla et al., 1998):
φ = sinc(·), ψ = sinc2(·),
ψ0 = cos(·)sinc(·), ψ1 = sinc(·)

The mollified filters promote smooth evolution of the
Hamiltonian. In contrast, the simple filters do not filter the
argument of the nonlinearity. In this case, numerical error
can oscillate with an amplitude growing with the step size,
increasing the likelihood for rejected HMC samples.

Figure 2 lists the steps of our proposed exponential integra-
tor for HMC—it is a drop-in replacement for leapfrog in
Figure 1. The integrator is explicit and with many opera-
tions precomputable, so iterations are comparable in speed
to those from leapfrog. See the supplementary material for
more details. This method is stable, however, when F (r) is
small relative to Ω2r. Correctness is given by the following
proposition, proved in the supplementary material:
Proposition 1. HMC using the integrator in Figure 2 is
convergent with equilibrium distribution p(q).

3.2. Strategies for Decomposing

U(q) = − log p(q) may not be given in form (3) naturally.
In this case, we separate out the Σ−1q term by approxi-
mating p(q) with a Gaussian N (µ,Σ). Without loss of
generality, we assume µ = 0 by shifting the distribution by
µ to achieve so. Our decomposition then becomes

∇qU(q) = Σ−1q + (−∇q log p(q)−Σ−1q)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

f(q)

. (8)
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Gaussian approximation provides a natural decomposition
for our integrator. The integrator is exact when f(q) = 0,
implying that HMC for Gaussian distributions using this in-
tegrator never rejects a sample. Even if Σ−1q invokes high-
frequency oscillatory behavior, e.g. when p(q) is sharply
peaked, the numerical drift of this integrator is only a func-
tion of its behavior on f(q).

We consider a few Gaussian approximation strategies:

Laplace approximation Let θ∗ be a local maximum (i.e.,
a mode) of p(θ). Then we can write

− log p(θ) ≈ − log p(θ∗) +
1

2
(θ − θ∗)THθ∗(θ − θ∗)

where H is the Hessian of − log p(θ). Hence, we can ap-
proximate p(θ) with a Gaussian N (θ∗,H−1

θ∗ ). The inverse
Hessian can then be used in our decomposition.

Empirical statistics We run a probing MCMC sampler,
such as HMC with leapfrog, to generate preliminary sam-
ples θ1,θ2, . . . ,θm. We then use the sample mean and
covariance to form a Gaussian approximation to kickstart
exponential HMC. We then accumulate a few more samples
to refine our estimate of the mean and covariance and form
a new approximating Gaussian. The process can be iterated
and converges asymptotically to the true distribution.

Manifold structures Inspired by Riemann Manifold
HMC (RMHMC) in (Girolami & Calderhead, 2011), we can
leverage geometric properties of the sample space. Similar
to the strategy above using empirical statistics, we update
our mean and covariance estimates after every m samples.
We take the sample mean of the m samples as the updated
mean and exploit the location-specific Fisher-Rao metric
defined in (Girolami & Calderhead, 2011) to update the
covariance. Namely, we set the covariance to be the inverse
of the average of the metrics corresponding to the m sam-
ples. Note that if the distribution is Gaussian, this average
simplifies to the inverse covariance matrix.

In contrast to the Laplace approximation, which provides a
global approximation centered at a mode θ∗ of p(θ), mani-
fold structures incorporate local information: Each Fisher-
Rao metric defines a local Gaussian approximation.

In §5, we extensively study the empirical effectiveness of
our exponential integrator with these strategies.

4. Related Work
Obtaining a high number of effective samples in a short
amount of computation time is a core research problem in
Hamiltonian Monte Carlo. Girolami & Calderhead (2011)
adapts the mass matrixM to the manifold structure of the

sample space, performing location-specific preconditioning.
Hoffman & Gelman (2014) and Wang et al. (2013) automat-
ically choose steps h and iteration counts L. Sohl-Dickstein
et al. (2014) extend trajectories to accepting states to avoid
rejection. For large datasets, Chen et al. (2014) formulate
HMC using stochastic gradients to reduce computational
cost. Many those approaches treat the numerical integrator
as a black box, often using the simple leapfrog method. Our
aim is to establish the benefits of more sophisticated and
computationally efficient integrators. As such, the integrator
we propose can be substituted into any of those approaches.

Splitting is a common alternative that bears some similarity
to our work (Hairer et al., 2006). It separates Hamiltonians
into multiple terms and alternating between integrating each
independently. In statistical physics, splitting is applied in
lattice field theory (Kennedy & Clark, 2007; Clark et al.,
2010) and in quantum chromodynamics (Takaishi, 2002). In
statistics, Neal (2011) and Shahbaba et al. (2014) split over
data or into Gaussian/non-Gaussian parts. The latter strat-
egy, also used by Beskos et al. (2011), has similar structure
to ours, never rejecting samples from Gaussians. Our ap-
proximations (§3.2) can be used in such splittings. But while
their integrator for the non-Gaussian part has no knowl-
edge of the Gaussian part, we use a stable, geometrically-
motivated combination. Blanes et al. (2014) also split using
Gaussian model problems; while they provide theoretical
groundwork for stability and accuracy of HMC, they study
variations of leapfrog. Pakman & Paninski (2014) report ex-
act HMC integration for Gaussians and truncated Gaussians
but do not consider the general case.

Our proposed exponential integrator represents a larger de-
parture from leapfrog and splitting integrators. Exponen-
tial integration was motivated by the observation that tra-
ditional integrators do not exploit analytical solutions to
linear ODEs (Hersch, 1958; Hochbruck et al., 1998). We
employ a trigonometric formula, introduced by Gautschi
(1961). This was combined with the trapezoidal rule (Deu-
flhard, 1979) and extended using filters (Garcı́a-Archilla
et al., 1999). There exist many variations of the proposed
exponential integrator; the one in this paper is chosen for its
simplicity and effectiveness in HMC.

5. Experiments
We validate the effectiveness of exponential HMC on both
synthetic and real data and compare to alternative methods.
All the algorithms are implemented in Matlab to ensure
a fair comparison1, especially when we evaluate different
approaches for their computational cost.

We present major results in what follows. Additional empir-
ical studies are described in the supplementary material.

1Code: https://github.com/pujols/Exponential-HMC

https://github.com/pujols/Exponential-HMC
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5.1. Setup

Variants of exponential integrators We use expHMC
to denote the exponential integrator where the mean µ and
covariance Σ are computed from parameters of the distribu-
tion, êxpHMC for integration with empirically estimated µ
and Σ, and rmExpHMC for those obtained from manifold
structures; see §3.2 for details. We only consider mollified
filters (§3.1) in this section and defer comparison to the sim-
ple filters to the supplementary material. We takeM = I
for the mass matrix in (1), unless stated otherwise.

For expHMC, we directly use the parameters of Gaussian
distributions on synthetic data, and apply the Laplace ap-
proximation on real data. For êxpHMC, we run HMC with
leapfrog for burn-in and use the last N1 burn-in samples to
estimate µ and Σ. Both are updated after sampling every
N2 samples. rmExpHMC follows a similar procedure to
êxpHMC, yet in updating, it uses information only from the
N2 new samples.

Evaluation criteria We evaluate performance by com-
puting acceptance rates (AR) and the minimum effective
sample sizes (min ESS). The min ESS, suggested by Giro-
lami & Calderhead (2011), measures sampling efficiency.
To take computation time into consideration, we report min
ESS/sec and the relative speed (RS) to the leapfrog method.

5.2. Synthetic Example: Gaussian Distribution

As a sanity check and to illustrate the basic properties of
exponential integration, we first compare the proposed expo-
nential integrator to the leapfrog (leapfrogHMC) integrator
on the 2D Gaussian distribution N (µg,Σg), where Σg has
eigenvalues {1, 0.1}. We run 200 iterations for burn-in and
collect 1000 samples, with (h, L) = (0.6, 8) for all meth-
ods, a fairly large step to encourage exploration of sample
space. For êxpHMC, we set (N1, N2) = (50, 20).

Samples and acceptance rates are shown in Figure 3. As
expected, expHMC accepts samples unconditionally. The
acceptance rate of êxpHMC increases as it updates the Gaus-
sian approximation, since the sample statistics begin to esti-
mate the mean and covariance accurately.

Next, we examine how the eigenvalues of Σg affect ac-
ceptance. We construct Σg with eigenvalues {1, λ}, using
identical parameters as above except (h, L) = (0.12, 10);
smaller h increases leapfrog acceptance rates. We vary
λ ∈ [2−8, 20], showing the acceptance rate of each method
in Figure 4a. Again, expHMC maintains acceptance rate 1,
while the leapfrog acceptance degrades as λ shrinks. The ac-
ceptance rate of êxpHMC is also affected by λ. As the sam-
ple size increases, however, the acceptance rate of êxpHMC
increases and converges to 1, as in Figure 4b.
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Figure 3. On a 2D Gaussian, expHMC always accepts proposals,
outperforming leapfrog under identical (h, L). The acceptance
rate (AR) of êxpHMC increases as samples are collected.

Preconditioning One way to mitigate stiffness in ODEs
of HMC (e.g., small λ in the previous example) is to adjust
the mass matrix M (Neal, 2011). HMC with M = Σ−1

g

is equivalent to sampling from a homogeneous Gaussian.
However, even with preconditioning, leapfrogHMC has
time step restrictions on Gaussian distributions. We further
demonstrate in §5.3 that preconditioning alone is insufficient
to deal with stiff ODEs on more complicated distributions.

We include more experiments on synthetic examples (e.g.,
mixtures of Gaussians) in the supplementary material.

5.3. Real Data: Bayesian Logistic Regression

We apply the proposed methods to sampling from the pos-
terior of Bayesian logistic regression (BLR), comparing
to leapfrogHMC and Riemann manifold HMC (RMHMC)
by Girolami & Calderhead (2011). We also compare to an
accelerated version of RMHMC using Lagrangian dynamics
(e-RMLMC), by Lan et al. (2012).

Model Given a dataset {xi, yi}Ni=1 with N instances,
where xi ∈ Rd is a feature vector and yi ∈ {−1, 1} is
a binary label, the posterior distribution p(θ) of Bayesian
logistic regression is defined as

p(θ) ∝ π(θ)
N∏
i=1

σ(yi(θ
Txi)),
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Figure 4. (a) On a 2D Gaussian, expHMC has acceptance rate
1 under varying λ (with h fixed). (b) The acceptance rate of
êxpHMC (at λ = 2−8) continuously increases as more samples
are collected.

where π(θ) is a prior on θ and σ(z) = (1 + e−z)−1.

Dataset We consider five datasets from the UCI reposi-
tory (Bache & Lichman, 2013): Ripley, Heart, Pima Indian,
German credit, and Australian credit. They have 250 to
1000 instances with feature dimensions between 2 and 24.
Each dimension is normalized to have zero mean and unit
variance to ensure thatM = I is a fair choice for leapfrog
and exponential integration.

Experimental setting We consider the homogeneous
Gaussian prior N (0, σI) with σ ∈ {0.01, 1, 100}. We take
L = 100 and manually set h in leapfrogHMC to achieve
acceptance rates in [0.6, 0.9] for each combination of dataset
and σ, as suggested by Betancourt et al. (2014a). The same
(h, L) is used for expHMC, êxpHMC, and rmExpHMC,
along with (2h, L/2) and (4h, L/4) to test larger steps. We
use parameters for RMHMC and e-RMLMC from their
corresponding references. We set (N1, N2) = (500, 250)
for êxpHMC and apply the same location-specific met-
ric defined by Girolami & Calderhead (2011) along with
(N1, N2) = (500, 500) for rmExpHMC. For expHMC,
(µ,Σ) come from the Laplace approximation. We collect
5000 samples after 5000 iterations of burn-in as suggested
in previous work, repeating for 10 trials. To ensure high
effective sample size (ESS), for all the compared methods
we uniformly sample L from {1, . . . , L} in each iteration,
as suggested by Neal (2011).

Experimental results We summarize results on the Pima
Indian dataset in Table 1; remaining results are in the
supplementary material. Our three methods expHMC,
êxpHMC, and rmExpHMC outperform leapfrogHMC in
terms of min ESS and acceptance rate, with similar speed as
leapfrogHMC. RMHMC and e-RMLMC have the highest
min ESS but execute much slower than leapfrogHMC, lead-
ing to poor relative speeds. Besides, expHMC, êxpHMC,
and rmExpHMC achieve acceptance rate > 0.8 under the
cases (2h, L/2) and (4h, L/4). The high acceptance rates
under larger step sizes allow them to take fewer steps during
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Figure 5. Acceptance rate and min ESS/sec of each method on the
five datasets, with σ ∈ {0.01, 1, 100} (the variance of the prior in
BLR). As illustrated, expHMC and êxpHMC achieve both higher
acceptance rate and/or higher min ESS/sec. Best viewed in color.

Table 1. Pima Indian dataset (d = 7, N = 532, and 8 regression
coefficients). “AR” denotes acceptance rate, and “RS” denotes
relative speed.

METHOD TIME(S) MIN ESS S/MIN ESS RS AR
σ = 100

leapfrogHMC 6.3 3213 0.0019 1 0.82
RMHMC 28.3 4983 0.0057 0.34 0.95
e-RMLMC 19.8 4948 0.0040 0.48 0.95
expHMC (h, L) 7.8 3758 0.0021 0.94 0.95
expHMC (2h, L/2) 4.1 2694 0.0015 1.29 0.88
expHMC (4h, L/4) 2.2 2555 0.0008 2.30 0.88
êxpHMC (h, L) 7.7 3876 0.0020 0.98 0.95
êxpHMC (2h, L/2) 4.0 3025 0.0013 1.47 0.89
êxpHMC (4h, L/4) 2.1 2845 0.0008 2.58 0.85
rmExpHMC (h, L) 7.8 4143 0.0019 1.00 0.97
rmExpHMC (2h, L/2) 4.1 3229 0.0013 1.49 0.91
rmExpHMC (4h, L/4) 2.2 3232 0.0007 2.78 0.90
σ = 0.01

leapfrogHMC 6.0 3865 0.0015 1 0.89
RMHMC 28.3 4987 0.0057 0.27 0.95
e-RMLMC 20.2 4999 0.0040 0.38 0.95
expHMC (h, L) 7.3 4239 0.0017 0.89 0.99
expHMC (2h, L/2) 3.8 4164 0.0009 1.69 0.97
expHMC (4h, L/4) 2.0 4226 0.0005 3.21 0.97
êxpHMC (h, L) 7.1 4141 0.0017 0.90 0.98
êxpHMC (2h, L/2) 3.7 3771 0.0010 1.57 0.93
êxpHMC (4h, L/4) 2.0 3540 0.0006 2.79 0.90
rmExpHMC (h, L) 7.3 4316 0.0017 0.89 0.99
rmExpHMC (2h, L/2) 3.8 4284 0.0009 1.68 0.97
rmExpHMC (4h, L/4) 2.0 3758 0.0005 2.80 0.93

sampling, raising the relative speed. Enlarging the steps in
leapfrogHMC, RMHMC, and e-RMLMC, however, leads
to a significant drop in acceptance and thus is not presented.

As σ shrinks, the ODE becomes stiff and the relative speeds
of all our methods improve, demonstrating the effective-
ness of exponential integration on stiff problems. This
is highlighted in Figure 5, where we plot each method
by acceptance rate and min ESS/sec on the five datasets;
each point corresponds to a method-dataset pair. expHMC
and êxpHMC achieve high acceptance rates and high
min ESS/sec (top right) compared to leapfrogHMC and
RMHMC, especially for small σ. For clarity, rmExpHMC
and e-RMLMC are not shown; they perform similarly to
êxpHMC and RMHMC, respectively.
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Table 2. MNIST dataset with digit 7 and 9 (d = 100, N = 12214).
“AR” denotes acceptance rate, and “RS” denotes relative speed.

METHOD TIME(S) MIN ESS S/MIN ESS RS AR
σ = 0.01

leapfrogHMC 1215 22164 0.055 1 0.88
expHMC (h, L) 1413 23720 0.060 0.92 0.96
expHMC (2h, L/2) 750 16643 0.045 1.22 0.87
êxpHMC (h, L) 1437 23080 0.062 0.88 0.94
êxpHMC (2h, L/2) 779 11919 0.065 0.84 0.73
rmExpHMC (h, L) 1450 24347 0.060 0.92 0.97
rmExpHMC (2h, L/2) 781 19623 0.040 1.38 0.90

Scalability Sophisticated integrators, like that for
RMHMC, lose speed when dimensionality increases. To
investigate this effect, we sample from the BLR posterior
on digits 7 and 9 from the MNIST dataset (12214 train-
ing instances); each instance is reduced to 100 dimensions
by PCA. We set (h, L) = (0.013, 30), with (N1, N2) =
(2000, 500) for êxpHMC and (N1, N2) = (2000, 2000) for
rmExpHMC. The prior σ = 0.01. Performance averaged
over 10 trials is summarized in Table 2, for 30000 samples
after 10000 iterations of burn-in.

expHMC, êxpHMC, and rmExpHMC have runtimes com-
parable to leapfrogHMC, scaling up well. High acceptance
rates and better relative speed under larger step sizes also
suggest a more efficient sampling by our methods. RMHMC
and e-RMLMC are impractical on this task as they take
around 1 day to process 30000 samples. Specifically, the
speed improvement of e-RMLMC over RMHMC dimin-
ishes for large-scale problems like this one, as shown by
Lan et al. (2012) and analyzed by Betancourt et al. (2014b).

Preconditioning In BLR, a suitable choice of (constant)
M is the Hessian of − log p(θ) at MAP, i.e., Σ−1 by
Laplace approximation. We precondition both our method
and leapfrog for fair comparison.2 With step sizes so that
preconditioned leapfrog PLHMC has > 0.85 acceptance,
expHMC still always results in a higher acceptance rate.
Further increasing the step sizes, acceptances of PLHMC
drop significantly while ours does not suffer as strongly.
More importantly, as σ shrinks (the ODE becomes stiffer),
we observe the same performance gain as in Figure 5. These
demonstrate the advantage of our method even with precon-
ditioning. Details are in the supplementary material.

5.4. Real Data: Independent Component Analysis

Given N d-dimensional observations X = {xi ∈ Rd}Ni=1,
independent component analysis (ICA) aims to find the de-
mixing matrix W ∈ Rd×d so as to recover the original d
mutually independent sources {yi ∈ Rd}Ni=1. We take the
formulation introduced by Hyvärinen & Oja (2000) that de-
fines a posterior distribution p(W |X). We then compare our
methods to leapfrogHMC in sampling from the posterior.

2Both solve the same ODE (2), using different integrators.

Table 3. MEG dataset (d = 5, N = 17730, and 25 sampling
dimensions). “AR” denotes acceptance rate, and “RS” denotes
relative speed.

METHOD TIME(S) MIN ESS S/MIN ESS RS AR
σ = 100

leapfrogHMC (h, L) 196 2680 0.073 1 0.85
leapfrogHMC (2h, L/2) 109 498 0.220 0.33 0.26
êxpHMC (h, L) 207 3256 0.063 1.15 0.95
êxpHMC (2h, L/2) 109 2579 0.042 1.73 0.82
êxpHMC (4h, L/4) 62 1143 0.054 1.34 0.64

We do not compare to RMHMC and e-RMLMC as these
methods do not scale well to this problem.

Model The joint probability of (X,W) is

p(X,W ) =|det(W )|N
N∏
i=1

{
d∏
j=1

pj(w
T
j xi)}

×
∏
kl

N (Wkl; 0, σ), (9)

where we use a Gaussian prior over W , with wT
j the jth

row ofW . We set pj(yij ) = {4 cosh
2( 12yij )}

−1 with yi =
Wxi, as suggested by Korattikara et al. (2014).

Dataset We experiment on the MEG dataset (Vigário
et al., 1997), which contains 122 channels and 17730 time-
points. We extract the first 5 channels for our experiment
(i.e,W ∈ R5×5), leading to samples with 25 dimensions.

Experimental setting We set σ = 100 for the Gaus-
sian prior (9). We set L = 50 and manually adjust h in
leapfrogHMC to achieve acceptance rates in [0.6, 0.9]. The
same (h, L) is used for our methods, along with (2h, L/2)
and (4h, L/4) to test larger steps. We only examine
êxpHMC, given its tractable strategy for Gaussian approxi-
mation. The parameters are set to (N1, N2) = (500, 250).
We collect 5000 samples after 5000 iterations of burn-in, re-
peating for 5 trials. In each iteration, we sample L uniformly
from {1, ..., L} to ensure high ESS, as in §5.3.

Experimental results We summarize the results in Table
3. With comparable computational times, êxpHMC pro-
duces a much higher min ESS and acceptance rate than
leapfrogHMC. As the step size increases, acceptances
of leapfrogHMC drop drastically, yet êxpHMC can still
maintain high acceptance and ESS, leading to better relative
speed for efficient sampling.

6. Comparison to Splitting
We contrast our approach with the Gaussian splitting
by Shahbaba et al. (2014). After applying the Laplace
approximation, they integrate by alternating between the
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nonlinear and linear terms. The linear part is integrated in
closed form, while the nonlinear part is integrated using a
“forward Euler” step. In the notation of Figure 2, we can
write an iteration of their integrator as:

ṙ0i+1 ← ṙi − 1
2hF (ri)[

ri+1

ṙ1i+1

]
←
[

coshΩ Ω−1 sinhΩ
−Ω sinhΩ coshΩ

] [
ri
ṙ0i+1

]
ṙi+1 ← ṙ1i+1 − 1

2hF (ri+1)

The nonlinearity vanishes when f(·) = 0, providing exact
integration for Gaussians.

The key difference between our integrator and theirs is in the
treatment of f(·). Their integrator treats f(·) independently
from the Gaussian part, stepping variables using a simple
explicit integrator. Variation of constants (6), on the other
hand, models the deviation from Gaussian behavior directly
and steps all variables simultaneously.

Figure 6 illustrates with a simple setting where this differ-
ence leads to significant outcomes. Here, we show paths
corresponding to a single iteration of HMC with L = 1 for
a Gaussian. For leapfrog integration these paths would be
straight lines, but both splitting and exponential integration
follow elliptical paths. We estimate the mean incorrectly,
however, so f(·) is a constant but nonzero function. Split-
ting provides a velocity impulse and then follows an ellipse
centered about the incorrect mean. Our integrator handles
constant functions f(·) exactly, recovering the correct path.

This example illustrates the robustness we expect from ex-
ponential integration. For nonlinear distributions, we can
use the “empirical” approach in §3.2 to determine a Gaus-
sian approximation. Empirical means and covariances likely
are inexact, implying that even for Gaussian distributions,
splitting with this approximation may reject samples. Our
integrator better handles the coupling between the Gaus-
sian and non-Gaussian parts of p(q) and hence can be more
robust to approximation error.

A more extensive empirical comparison to splitHMC is
given in the supplementary material. In general, splitHMC
performs similarly to our methods with simple filters
(cf. §3.1), as discussed in §7. Our methods with mollified
filters, however, handle departure from Gaussian approxi-
mation more stably, outperforming splitHMC.

7. Discussion and Conclusion
The integrator for HMC has a strong effect on acceptance
rates, ESS, and other metrics of convergence. While large in-
tegration times encourage exploration, numerically solving
the underlying ODE using leapfrog requires many substeps
to avoid high rejection rates. Although RMHMC deals with
this issue by locally adjusting the mass matrixM , it suffers
from significantly increased computation costs and poor

(a)

∇qU(q)

=

Σ−1q

+

f(q)

(b)

Splitting

Exponential

q(t), estimated

Figure 6. Comparison between splitting and exponential integra-
tion. (a) The acceleration vector field corresponding to a Gaussian
distribution is shifted, leading to a nonzero f(q); (b) this simple
but nonzero f(q) is enough to perturb the initial velocity (0, 1) of
the elliptical path for splitting, shearing to the right.

scalability. In contrast, our method is based on an efficient
explicit integrator that is robust to stiffness, even without
preconditioning.

The choice of numerical integrators is a “meta” parameter
for HMC, since each integrator discretizes the same dynam-
ical equations. Our extensive studies have revealed,

• When the step size is small, leapfrog suffices.
• When the step size is large enough that acceptance

for leapfrog declines, splitting and exponential integra-
tion with simple filters maintain stability. In this case,
mollification sacrifices too much accuracy for stability.
Details are in the supplementary material.

• For large step sizes, exponential HMC with mollified
filters avoids degrading performance.

• Empirical means and covariances yield stable Gaussian
approximations for exponential integrators.

While our experiments focus on basic HMC, future studies
can assess all options for HMC, accounting e.g. for exten-
sions like (Hoffman & Gelman, 2014) and (Sohl-Dickstein
et al., 2014). Additional research also may reveal better
integrators specifically for HMC. For instance, the exponen-
tial integrators introduced by Rosenbrock (1963) use local
rather than global approximations that may be suitable for
distributions like the mixture of Gaussians, whose Gaussian
approximation should change depending on locations; the
challenge is to maintain symplecticity and reversibility. Ex-
ponential integration also can be performed on Lie groups,
providing avenues for non-Euclidean sampling. Regardless,
exponential integrators remain practical, straightforward,
and computationally inexpensive alternatives for HMC with
the potential to improve sampling.
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