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Algorithm

" |nvestigate numerical integration
of ODEs for Hamiltonian Monte
Carlo (HMC)

" Propose the use of a exponential
integrator, which is more robust
to stiff ODEs than the standard
leapfrog integrator

" Generate effective samples with
high acceptance in short time

" |[mprove the technique of integration
» Fast step, large h w/o tuning M
" Why does leapfrog need small h?
» High-frequency (stiff) components of ODE
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» Stiffness: distributions peak around modes

Leapfrog HMC (previous) | Exponential HMC (proposed)
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Similar complexity: Matrix operations (e.g., filter functions in blue) are pre-computable

Introduction

= HMC belongs to Metropolis-Hastings
MCMC: proposal + acceptance test

" Proposal based on classical mechanics
g~p(a)=(a, p) ~p(a, p)=p(a)r(P)
Q. position P: momentum

H(aq, p)=—logp(q)-logp( p)
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" Final positions of motion (after time
t) as proposals, governed by ODEs
= VH=M"p

9 =§+M 7V U(q)=0
p=-VH=-V U(q) U(a)

" |n practice: divide tinto L steps h
> Acceptance: H(g*, p*)%H(OI“), IO(i))

hi= acceptance T VS. LT=timeT

" Challenges: numerical integrators
» Leapfrog: fast step, limited h
» Preconditioning: suitable M
» RMHMC: adaptive M, slow step

Approach

Experiments

Exponential Integrator:
" Explicitly consider different frequencies
" Decompose the ODE into two terms

1) Linear: high frequency (unstable)
2) Nonlinear: low frequency (stable)

" |ntegrate the linear term analytically
" |ntegrate the nonlinear term numerically
using variation of constants

Exponential HMC:
= Decomposition

v,U(a)=4 "q+ f (q)=4 *q+(V,u(a)-4& *a)
| -V, log i

L p(q)
P(a) =N (e ma ) ma)
= Gaussian approximation:
1) Laplace approximation (expHMC)
2) Empirical statistics (expHMC)
" |ntegration: ensure convergence of HMC
» Explicit integrators [Hairer & Lubich, 2000]

» Filter function [Garcia-Archilla et al., 1998]
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= Evaluation:
(1) Acceptance rate (AR) (2) min effective sample size (ESS) (3) min ESS/Time (s)

" Gaussian distributions " Posterior of Bayesian logistic regression (BLR)
» (h, L) = (0.6, 8) » 5 datasets from UCI repository
leapfrogHMC ~ expHMC expHMC » Prior: N(O,S | ) with S 6{0.01, 1, 100}

» L =100, h selected to ensure suitable AR
*x leapfrocHMC <« RMHMC e expHMC =» exdHHMC

o expHMC(4h) o exgHMC(4h)
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