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Highlights
 Investigate numerical integration

of ODEs for Hamiltonian Monte
Carlo (HMC)
 Propose the use of a exponential
integrator, which is more robust
to stiff ODEs than the standard
leapfrog integrator
 Generate effective samples with

high acceptance in short time

 Improve the technique of integration
 Fast step, large h w/o tuningM
 Why does leapfrog need small h?
 High-frequency (stiff) components of ODE

 Stiffness: distributions peak around modes Similar complexity: Matrix operations (e.g., filter functions in blue) are pre-computable

Algorithm

Introduction
 HMC belongs to Metropolis-Hastings

MCMC: proposal + acceptance test
 Proposal based on classical mechanics

 Final positions  of motion (after time
t) as proposals, governed by ODEs

 In practice: divide t into L steps h
 Acceptance:

 Challenges: numerical integrators
 Leapfrog: fast step, limited h
 Preconditioning: suitableM
 RMHMC: adaptiveM, slow step
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Approach
Exponential Integrator:
 Explicitly consider different frequencies
 Decompose the ODE into two terms

1) Linear: high frequency (unstable)
2) Nonlinear: low frequency (stable)

 Integrate the linear term analytically
 Integrate the nonlinear term numerically

using variation of constants

   

        
   
          

   
0

1/2 ( ) 1/2 ( )
0 0

1 2
1

1

1
1/2 /

1
1 2

,  ,
 0,1,..., 1

      cos sin 0.5

      sin cos

               0.5
, ,

i i

j j j j

j j j

j j

L L

j L
h h h h h

h h

h h h h h












 

  

  

 






 



r r M q M p

r r r F r

r r r

F r F r

q* p* M r M r

 

   

    

  

   

for

 
 




      
   





p

q

q q

q M p
q M q

p q

1
1 0

H
U

H U

   ( ) ( ),  ,i iH Hq* p* q p

[1] R. Neal. MCMC using Hamiltonian dynamics. Handbook of Markov Chain Monte Carlo, 2011
[2] M. Girolami and B. Calderhead. Riemann Manifold Langevin and Hamiltonian Monte Carlo
methods. Journal of the Royal Statistical Society, 2011

Experiments

 Gaussian distributions
 (h, L) = (0.6, 8)

 More details in the paper and suppl.
 BLR: scalability & preconditioning & splitting
 Posterior of Independent Component Analysis

Exponential HMC:
 Decomposition

 Gaussian approximation:
1) Laplace approximation
2) Empirical statistics

 Integration: ensure convergence of HMC
 Explicit integrators [Hairer & Lubich, 2000]
 Filter function [Garcia-Archilla et al., 1998]

            q qf q qq q qq    11 1 UU

     
 

 
q

q q
q










; ,
; ,

p
p
q log


(expHMC)
(expHMC)

           q M q f q r r + F r 1 1 20 0

 Posterior of Bayesian logistic regression (BLR)
 5 datasets from UCI repository
 Prior:
 L = 100, h selected to ensure suitable AR
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